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Introduction :

Wave propagation along a perfectly canducting cylindrical wire

parallel to a plane interface between two dissimilar materials has been

an area of theoretical and practical interest for several decades. During

this time the problem has been treated in varying degrees of approximation

. by many investigators. Among the more relevant to this work are the treatments

. of Waitl and Chang and Olsenz. Wait postulated a primary longitudinal Hert:z
potential which generated a cylindrically symmetric TM field surrounding the

wire. He then expanded the field into a spectrum of plane waves and scattered

these plane waves from the interface to obtain the totalelectric field. Requir-

ing the longitudinal component of this totalelectric field to be zero on

the surface of the wire he obtained an equation for the modal propagation

constants. Chang and Olsen studied this modal equation in detail and showed

the existence of not only the usual transmission line mode but also a so-

1 called "earth-attached'" or "fast-wave'" mode. However, all of this work was

done in the thin-wire approximation. That is, the only current accounted

for on the wire was the angular average longitudinal electric current.

If the wire is not thin and/or is less than a fraction of a wavelength

away from the interface, one would expect that the longitudinal current would
have some azimuthal variation and that there would be some azimuthally

* directed currents. Thus, one is led to inquire as to the conditions under
which these angularly dependent currents can be neglected in formulating

the modal equation.

o wid 4,

In addressing ourselves to the question posed above, we formulate the

problem in general and then express the modal equation retaining only the

zero-order and first-order terms in the azimuthal variation. Then by

-
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comparing the first-order terms with the zero-order ones, we obtain a
criterion for determining the error incurred in retaining only the zero

order terms. Some work in this regard was carried out by Grinberg and
Bonshtedt3 but their results appear to be limited to cases where the
propagation constant is unmodified by the presence of the first order currents.
That is, they have assumed conditions such that the zero-order equations

de-couple from the higher order ones. The approach presented here takes full

POy G TR W Cage - 1 T Y

, account of the coupling.

Formulation
The geometry to be analyzed is shown in Figure 1. The wire is‘infinite
in the z-direction and all field quantities are assumed to vary as elklme'i“"t
where k1 = m/ﬁ;EI'. Similarly kz = w/ﬁ;EE' and may be complex to account
for loss in medium 2. A cylindrical coordinate system is shown with its axis
: coincident with the axis of the wire. We postulate an infinite sum of two

dimensional electric and magnetic multipoles of unknown amplitudes located

on the axis of the wire. Expressing the field of each multipole as a spectrum

of plane waves and scattering each plane wave from the interface one could

obtain an expression for the total tangential electric field exterior to

b the wire. Then, requiring the tangential field components to be zero on the

F o wire surface one would obtain an infinite set of simultaneous linear equations

for the amplitude of the multipoles. Being homogeneous, these equations

require for non-trivial solution that the determinant of the coefficients be

zero. This requirement would yield the modal equation.

Before proceeding with this formulation, however, we first divide the

modes into three categories of which only one will be studied. The categories

are: those with no zero-order magnetic multipole field, those with no zero
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order (angularly independent) electric multipole field, and hybrid modes
with both zero-order multipole fields. In this treatment we will concern
ourselves only with the modes of the first category because among them are
the modes studied in the thin-wire approximation by previous investigators.
Moreover, we will treat only modes which are symmetric about the x-z plane.
Thus, we postulate the presence of a zero-order electric multipole and first
order electric and magnetic multipoles and assume that all higher order
multipoles have negligible amplitude.

The postulated multipoles will be represented by their Hertz vector

potentials as follows. The zero-order electric multipole potential is
# =L a b 0 ()

where

r =Q1 - az)i , and Im(z) > 0

Now, we note that one may generate from this potential the potential for the
first-order electric multipole by merely differentiating with respect to the

distance d from the multipole to the interface and dividing by gkl.

That is, &
om
=€ _l_ A i Rl (1)
ST A kz &,H, " (ckyp)cos ¢ )
1

If there were to be a zero-order magnetic multipole, its potential would be
R L (1)
Yo /i b ) (3)
1 o

Now, the symmetric first order magnetic multipole field corresponds to the

antisymmetric first order potential. This potential can be obtained from

A




(3) by taking the negative of its derivative with respect to y and

dividing by klc . Thus

e DS ()
T = le 3y T kz F H (;lrlp)sm ¢ 4)
1 (4]

Next, each of the potentials (1), (2), and (4) will be used as a primary
i source a distance, d, from the interface and in each case the components of

the total exterior electric fields tangent to the wire surface will be

derived.

Considering first the zero-order electric multipole field, we write

its potential as a plane wave spectrum in the form 3

-ullklx-Dl -ixk,y

.58, 1 juLe * oA )
1 Gk

k
2 2.4

where u = [A"-¢"]* and D = kld‘ Now, following a procedure similar to

that outlined by Wa1t1 we introduce transmitted and reflected Hertzian

potentials of electric and magnetic types as follows.

" -u, (k,x+D) -iAk,y
#e -Ll 1TE % 8 fwx>0 (6)
oR ~ iﬂk

[ 1Y

-u, (k,x+D) -iAk.y
IZIMQ)ell i Y4

for x > 0 (7)

2 (A) -u.D uk x -iAk,y
*:T "% .wl I. TuA Jo R8T

for x< 0 (8)

1 I“N(Al ;ulD euzklx e-1xk1ydA
b

inklz -

for x< 0 )




2. 2 2.W2 Jp =0 . ;
where u, = [A®+a"-n , N = 2/k1 and . and my are magnetic Hertz vectors

Now, computing the tangential components of electric and magnetic fields from

these potentials and requiring continuity at x=0 we obtain,

2
Zu.u
1+R(A) = %l__l_g__ u
4

2t Yy
M) = 210.(!1 -1) r >
(u1+u2)(u nu, )

Thus, the z component of the total electric field for x > 0 is,

Uy (kyx+D) -ik )y (12)
e da

WD ey - AP e + |

and the ¢ component i

e 1 3 (e e) 2 .e
E¢o ¢ "o Tor 1wu° ) oM

g 10‘ g ()

2
o 3 J A -u,u, u{k x+D) 1k1>\yd)‘
3¢

s %) u2+n ul

-u, (k,x*D)-ik, Ay
1agn -1) 9 J A p J (R | o 1 dx

ap - 2
m; k1 -o (u +u2) (u2+n ul)

where p' = [(x+d) +y ]1/2 ,and D = kld'

Turning next to the first order electric potential (2), recalling that
an®
1To, and noting the linearity of the reflection piocess we see
ad
e -
P oR | SR oM R |
= _;kl = o and “lM ——— . Thus, Ezl o

3 ©
z0

3d or




(1)
2 1 (cklp) cos$ + czﬂl(l)(cklp")cow'

©  A-u,U -u(k.x+D) -iAk.y
——Z-I ul-———l-—g e u{ 1 e ax

T u2+n2u1 (14)

where p' and ¢' are cylindrical coordinates referred to x = -d, y = 0; i.e.,

cos¢' = X+? = x+d
Pt L Py ?) 2 i
and
R B
pi il 172 (16)

[(x+d)2+y ]

Similarly, by first computing "1’ "iR’ and 7°, and then substituting in,

1M
iak
Sl W th - SR 3 e
E¢1 = 3% (ﬂl + "lR) iwu 30 M (17)
we obtain,
e . ia (1) ol )
Eg1 k;p Hy™7 (zk p)sing + ——k 0 3¢ LHy ~ (gkjp')cose’ ]
o Az-u u -u, (k,x+D) -iAk.y
2a 1 9 172 el 1
- —_— ] U, —— e e dx
u;3 ke 3 1u +n“u
o= 1
_Ziagnz-l} —B-J Aul e-ul(k1x+D) e-1Ak1ydk s
3 3 7 2
14 k1 - (u1+u2)(u2+n ul)

In order to obtain fields due to a first-order magnetic multipole, we
begin with a zero-order magnetic multipole in anticipation of obtaining the
desired result by differentiation. Thus we proceed to express the zero-order

potential in terms of its plane wave spectrum as,

T e T N TN TR TR, i
D P T ) ki SN
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?,“‘ g 5 e_l 5 Im.l__ -ullklx-Dl -ukly (19)
9 kf o il _wul
As before we postulate the following scattered potentials.
- Kk x+D) -iAk;
Sm i EP Lrey W UkgxeD) -idkey
B %o 5 = e e dA
k1 50 A R R
for x >0 (20)
a1 [E) ey e‘“l(kﬁ“n)e'i“‘lydx
oMy Ziate]l N
1 Gz for x> 0 (21)
T i e—l[ Toy N D . k, X e-ixklydx
kel for x < 0 (22)
am _ 1 rf_ (Al -u, D eu k xe-1kk =
oN 2. M u
k,7im Yo 1
1 for x < 0 (23)

-0

where we emphasize that '}:M and‘?gN are electric Hertz potentials. Imposing

continuity of tangential fields at the interface yields,

Az(u +n2u )-u (u +n2u )
P 1 e e
S ol 2 uy (24) ?
g (u1+u2) (u2+n ul) A
Zia(nz-lg Yo Aul
1 (u1+u2)(u2+n ul)

Thus, the z component of the total electric field for x > 0 is generated by

m

‘NOM .

In particular,

e oy a(n ~-1) J A e'“l (klx‘m)e-nklydk
o 2
- (u +u2)(u +n ul)

(26)
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and by differentiating with respect to y and dividing by k1 we obtain,

o =-Qia(n21;) [D AZ e-ul(k1x+D)e-1Aklydx
zl L {4 2
I (u1+u2)(u2+n ul)

as the z-component of the total electric field for x > 0 due to a first order

magnetic multipole source. Likewise,

iak
m _ Fogr 9 m m
Ba " m T g ap 1 e mag)
That is,
R e G,
¢1 3 ¢ 2
114 klp b (u1+u2)(u2+n ul)

-i;H{l)(;klp]sin¢ + %I'%E'Hfl)(§k1p|)5in¢'

2 9 Az(u1+n2u2)-ulu2(u2+n2u1) -u, (k,x+D) -iAk.y

= =g g o Tl R
iﬂ; k = + + 2

1 i (u1 uz)(u2 n ul)

The fields of all higher order multipoles will be neglected.

The boundary conditions at the surface of the perfectly conducting

wire p = a imply that,

e m

e =
AoEzo * AIEzl i MIEzl i
e e m
A°E¢° + AIE¢1 + M1E¢1 0

on the wire. In these equations Ao’ Al’ and M1

(27)

(28)

(29)

(30)
(31)

are unknown amplitudes of the

zero order electric, first order electric, and first order magnetic multipoles,

respectively. Each mgltipole field evaluated on the wire surface is now

written in Fourier components. For example,
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=Ee

e e
o o + Ezolcos¢ + Ezozcosz¢ o

(32)

m . m
ol = E¢lls1n¢ + E

E 012

sin2¢ +...

k Equating the coefficients of ¢ independent, cos¢, and sin¢ terms yield a
homogeneous set of three simultaneous linear equations. Thus, we require

that the determinant of the coefficients be zero; that is,

e e m
J Ezoo Ezlo Ezlo
e e m
2ol En Eqnn =0 (33)

e e m
Egol Epr1 Ep11 ,

4 This represents the modal equation for a up to first order Fourier components.

It remains to find explicit expressions for the Fourier components of the

e

i fields, i.e., the matrix elements. Had we neglected the first order terms

the equation would have read E:0°=0 which is equivalent in the thin wire
2

approximation to the result of Wait! and Chang and Olsen

Representation of the Matrix Elements ;

Recall that all of the integrands involved here contain the factor
-ul(k1x+D) -ixkly
e e . This factor can be conveniently represented in the

following form.

E . in(9-9 +%/2)
E -ul(k1x+D) -1Ak1y p -ZuID Z Jm(;klp)e (34)
e e =e
;’ m=-o
® 11 sy
‘; where 9" -sin’ T or ¢° = cos g For our purposes, a convenient form
jL;‘ of this relation is
e -u, (k;x4D) -ik,y  -2u.D %
ii" g o e Youg * {Jo(cklp)*Z 2 Jm(cklp)
= m=1
g.j’ x [cos m¢ cos md + sin m sin m¢]} (35)




SRS

Upon substitution of this form in the integrands it is found expedient

to define two fundamental integrals.

[ )
I.(o;D) = L f e
1@:0) = — 1 e d) (36)

I,(a;D) = il f ue dx (37)

Now, all of the integrals resulting from substitution (35) may be expressed
in terms of these two fundamental integrals and their derivatives with
respect to D.

The expressions with which we are concerned also contain Hél)(cklp')
which we desire to write in terms of p and ¢ . This is accomplished by

the addition theorem,

HIEI) (ckp' JeriP gy Hn(‘l) (2zD)J

= =00

i(men)¢

men (K P)E (38)

which implies that,

HD 2k p") = 1{D (2200 (gk ) + 2 o D (200)3_(zk p)cos mp (39

Hfl)(;klp')cos ¢' = -Hgl) (Z;D)Jo(;klp) -2 nzl H:l) (2;D)Jm(ck1p)cos m¢
(40)

HD (zk p")sin ¢' = 'a;l_o mzlmulf‘”(z;n).xm(;klp)sin o (41)

Substitution of (35), (39), (40), and (41), and p = a, into (12), (13),

(14), (18), (27), and (29) yields the following expressions for the matrix

elements.
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2.0 (1)

BS o= ¢ H§- )(ckla) {4 H (2tD) + 1;]J (ck;a) (42)
2,.(1 1 "

ESyy = - (262 torp) + 1309, @k;a) (43)

e = _2& (1) " O et 2 3' (ck

(44) :
e (1) __ u (45) 1
ES 0 = -1 (@) + 5 151 ek @)
e 2,(1) 20,1’ i " i
Ejy = O (k@) - 2P D) ¢ g 13, 6y (46)

1 "
7 13 19,k a)

g .o da )y g, 200 (7 o,
) &k, 3) kla[l i

011 k,a

2
+ Ls [1y' + 4 x;]Ji(ckl_a) (47)
2¢
mo 9 g, g2 48
Es10 = 3% (1, + 4 1,1 3, (ck a) (48)

m - ia e 2: 0 49
T S s M Y s

m H(l) k) + (”(2 D)J] (zk; @) o’ ("™ + 4z’ 113, (zk,a)
E¢u = -ig (ck,a) 4 4 2c4kf 4 4

2 " ! ]
.2 -0 s 4l o (e g ] 9jex@ (50)

_‘- P 2z 2z

2

I, -a'l

- where 13 =1, 20 I4 = I1 - Iz, and primes on the I symbols denote

£ differentiation with respect to D. It is now easy to see that as kla
T e & e m . -
g’ . approaches zero, Ez 00" Ezll’ E¢11’ and E¢11 predominate and equation (33),

the modal equation, becomes

e e m
00 11 Bp11 = O (51)
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which is certainly satisfied when E:oo = 0; as required by Wait1 and by

Chang and Olsen2 . It remains to obtain approximate expressions for the
fundamental integrals, I1 and 12, in order to arrive at a criterion for
validity of the thin wire approximation. We further note that all the Ij's
and their derivativesvanish when the earth becomes perfectly conducting.

' It is then not difficult to show that the only acceptable solution is C2==0
or & = 1., The result then reduces to the well-known result of a two-wire

transmission line.

Proximity effect for a small height

We now proceed to discuss the proximity effect as the thin-wire

approaches the earth surface. In particular, we are interested in the

RRaE e L2 it L b bl R el s

case when the height of the wire is much less than both the free-space

wavelength and the skin-depth of earth so that the fundamental integrals
é (36) and (37), and their higher derivatives can be evaluated in a manner

similar to that used by Chang and Whit? provided that [Z|D<<1 and

[n|p << 1, the following approximate expressionsfor Ii@:;D) and IéGI;D)

hold:
e LA :
2 Il(a,D) = Ho (2zD) T 110’ (52)
£ 3 . iy i2
e C s A 12 %
; (D) = - (=) H ™ (2t) + 3= T30 (53)
T l+n
; “ ) 2y & 3
‘,‘ - where I10 and Iz0 are independent of D and given by
i . y 2
: 1
{ ' (@) = —— fn= +2 (s4)
L g 10 n2_1 Z, 2

nz-ik (1+n2)*

' 2 4 in L
I.(a) = - (—=){&n = +-——TT—[941——P——1—;-+ Ln 1}
20 (l+n2) ®n Ap(1+n ) 1-iAp(1+n ) %n

(55)

. » e -
.a!‘._v_

o -

2 2.3 2,..-%
A = - = -
and p (o ap) and ap n(n“+1)

el e e g
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Successive differentiation with respect to D then gives the higher
deriyatives of Ifj] and Igj); j=2,3. On the other hand, the integration

on D on both sides of (52) and (53) Yyields the result of

1 (@0) = 1@ - oM @2e0) - 22 [re1] (@]} (56) |
6
1,(a;0) = I,g(a) - D (ﬁ) ) - 22 -2 q ) 57)

where Ilo(u) and 120 (o) are the values of I1 and 12 evaluated at

D = 0. Thus, if now we substitute (52) - (57) into (42) - (50), while

retaining only the leading terms in the small-argument expansion in D

T R Y R e

and A, the following approximate expressions for all the relevant field

components are obtained:

2.2
e Sl BT

& - i A n _oimy o o
WL g s R ) Ll (38)
where y = 0.577216 --- is the Euler's constant, A = kla and
’ ' 2.
150 = Y10 -T2 »
2.2
: (G 24
2 (A 2.5 n
E® . =- 22 () (g°-i ) (59)
201 ™ ZD) nz+1
2;2
g .. 12 (ia [2_. nJ 60
601" 7 (——ZCZD) Z 1(n2+1] (60)
b
e = i2q ¢n"-1 1
a0 7 (7 ) (2 o)
a 2 .2
e ,_i2 Ly[2 (A2 ;’;"]
Ba1%" (;A)[_-C *@) (=) e

e 2 2. A2 2, 2%
Fo11%~ '—1“2;3 &+ () [‘ 'i(n""‘zd)] } .
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R 2 i2a (n -1 1
Bpio® - 5 ( n2+l) (%p - (64)

2 2

m _ 20 m-1cA 1

En=w (@ @ - (65)
m 2 2 4ibxe. 2. 2"’;2,

Eo11 = ﬂ_A_ZCS {z° + (3 %1 (ﬁ} (66)

With these approximate expressions, the original model equation as given

by the determinant in (33) now takes up a much simplified form of

i2

E:OO " 1—“- (@ =0, (67)
or

2. 2D (‘z*czza) g :

-T R.n-—A-*-;-zT'(anD'*Y-l n/2) - 1304' §(@) =0, (68)

where
R 2 2 -1
2(A n -1 A T
s = ¥ CrY | ] (69)
e T b -12;3/(:&1)

and the expression for Iéo = I;o - a?léo is given by (54) and (55).

Except for the term &(a), (67) and (68) now correspond exactly to the
approximate modal equation derived by Chang and Waits using the so-called
"thin-wire" approximation in which the longitudinal current is assumed

to be angularly uniform and the azimuthal current neglected. Denoting

a, as the solution of E:OO(ab) = 0, one then concludes that the con-
dition |6(a°)| << IaoaaE:OO(ao)l must be imposed. We note that a

suitable solution of E:oo(ao) = 0 is known in Chang and Whits to be

2= (1-0d) ~ |tn 0| [on 20/A]1 "}




16

provided that the condition In2|>> ;g >> lnzj'l holds. Thus, 6(a,) is
generally of the order of (A/ZD)ZQn(ZD/A). We further note that the
magnitude of first order electric and magnetic multipoles are related to
the zero-order electric multipole by (30)-(32). Using the simplified
expressions in(58) - (66) and also neglecting terms of order (A/20)2,

it is not difficult to show that

2.2
5 ~(£‘.2_ )(¢215+C“ ) (70)
= Sz ’
Ao 2zD n2+l
and
2552
i (ﬁ) (2;2-1‘. £ ) (71)
Ao 2¢D 1%s1 ’

To determine the non-uniformity of the surface current, one merely needs
to compute the dominant contribution to the gurrent density at the wire

surface. Now since the uniform current density Jsz is proportional

o
to AOH;(CA) and the cosinusoidal current Jszl is proportional to

Alﬂi(gA), we obtain

J
———JS“ «(%) gn (3‘\2) (72)
SZ0 g

which means the perturbation of the current is usually larger than that of the

propagation constant.
Equation (69) and the condition |6(a°)|<< laoaaE:oo(ao), give the explicit

dependence of thin-wire approximation on the radius-to-height ratio.

In that derivation however, we have not taken into the account the fact

that each term in the small (zD) expansion individually can be very
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large because of the different functional behavior in a. In particular,
it has been shown that,as a result of the residue contribution from a
pair of poles in the integral given in (37), both 13 and 14 possess an
inverse square-root singularity with the branch points located at

“p =::n/(n2+1)i in the complex a-plane. These branch cuts are associated
with that part of the continuous spectrum which radiates along the earth
surface. Thus, in the neighborhood of a =~ ap, we have from (37) and the

definition of 13 and I4
2 2n? 2

2
) Ry - (R @ -a7)
3 4 4 n4~1 P

= e-izncnz-l)‘* (73)

with the higher-order derivatives I§m) and Igm) for m>0 given as

m
m) _ [ -Zi]
" = I (74)
3,4 me.pni 3.4

Provided that (A/2D) is small, we can again find the approximate field
expression from (42)-(50). A similar analysis then leads to the con-
clusion that |&(a)] is negligible whenever |A2/n3| <«< lﬁzz-a:)*l ;
Thus except for a small region near a=1, specified by I(az-l)l <<(A./2D)2
according to (69), and an even smaller region near a ==up, the thin-wire

approximation is indeed well justified.

Corresponding results for a large height

In the case when the height is greater than several skin-depths of
earth (i.e., [n[zD2 >> 1), the fundamental integrals (36) and (37) can be
approximated asymptotically in a manner similar to that used by Chang and

Olsen. (In fact their W(a) is in their approximation just equal to our
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i1m212.) Beginning with I1 we write

dA

o0
f u +in -2u1D
m(n -1) -=

1 3 2ot

= " e

=2 ——a—A|z— - in —dA

iw (n2-1) (a" ):[o Y w=2D

= eV 20y + ini P (200 (75)

n -1

where u, has been approximated by -in because most of the contribution

to the integral occurs where

3 252
u, = [A b n2] z -in[1 - A ﬂ; ] (76)
2n
2 2
and l |<<1. As indicated by Chang and Olsen, a better approximation
2
is u, = _—;n—;— d
2 %)

An approximation for I, can be obtained directly from Chang and
Olsen as mentioned above. However, we present here the derivation of a

more approximate but simpler expression. First, we cast I2 in the form,

I

2%
© ol "
)" _;_ f H(El) (x)e ng 0-21 D/n 44 N

i .
An approximation for large 2zD may now be obtained using the large

argument asymptotic expression for Hgl) (x). That is,
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s, 1
oo b A3 p 202X oip/m
ol i b G St e dx
n‘g X

2zD
/5_ [(l-i) 1 :] -2i D/n
= _'7=T' erfc||l—=-] /2D (1 +— ) e (78)

Now, using the large argument asymptotic form for the complementary error

function we obtain:

- 1 2izD
1., = A& 2 (79)
2 L 2 1 v/ZD
(cn)“(1 *;E )

To the same order in 1/zD we have

. 24D
g y
I % j7 (nz ) = = (80)

n -1

To this order of approximation 8-3- —> 2iz so that the derivatives of
the I's in the matrix elements may all be replaced by factors of 2ig .
Use of (79) and (80) will result in a lowest order approximation for
large zD. If D 1is not very large one must obtain more accurate ex-
pressions for I1 and I2 as was done by Chang and Olsen. For purposes
of this treatment, however, it will be assumed that zD is sufficiently

large that our asymptotic forms are appropriate.
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The approximations obtained above will now be substituted in (42)-(50)

and the amplitudes A1 and M, will be found in terms of A, and

1
parameters. For notational convenience we define,

eZit;D
v ingD
Thus,
X, 2 -i(%]) G (82)
n -
2
I = -1(1—/(-'5)— ) G (83)
1+1/(n%)
and
2
. . [n-t (o/n d ]
I,%- = G = q56 (84)
3 1[;2—1 1+1/(ng) °
I Li{"'; . amy? :]G = q,6 (85)
4 n2-1 1+1/(ng) 2

Retaining only constant and linear terms in the series for the Bessel
functions Jn(cklp) and evaluating at p=a; i.e., klp = A, we have

for large ¢D and small CA,

ES o ¥ LHD (@A) - (cP+2itag)6 (86)
E® . = izA(z2-27q,)G 87
201 g ICA(; e Cqs) ( )
E;01  a(z - 295)6 (88)
E:m 5 -ig(g +2iq;)6 (89)
B2, s ;zufl)(;A) - 2 (z-2q)A6 (90)
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=5 i 1 2
Eoy % - SR HD @A) + ia(E - 2056 (91)
Ez10 © 0 72
E’;‘u 20 (93)
Ep11 -igi{") @) (84)

Using these approximations to the matrix elements in (33), one then

obtains E: b = §(a) = 0, where

0

i4zD

8(0) = -(35) (BA) (z+i2ay) (c-2q5) e (95)

The condition |§(a)| is small requires a small radius-to-height ratio

in addition to a small [ZA|. Letting ¢, be such that Ezoo(co

and defining Az to be Cl - L;o where t;l is the value of < which

) =0,

satisfies (33) in this approximation we find in agreement with the

general theory of small perturbations that

4
AZ | . A2 (qo/n zJ
IC e % ZA (96)
o £5p0 LaY (1+1/n Co)z
and,
2 2
/= G AT (o /n)
1A, = 2 |Al 5 M| =0 (97)
o /gD Q+1/ng))
so that the ratio of the first-order current component to the uniform
current is given by
L 5 ok (a /n co)z
|2 = n (98)

sz0 (QP)J" 1+1/ (ng)
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Now, since LOD is the large parameter, one might say the currents are
perturbed but the propagation constant is not. The conclusion we
derived for a large height is therefore consistent with the case of a

small height.

Conclusion -
The work presented was primarily concerned with obtaining a measure
of the significance of the first-order components of the currents on the

wire compared with the zero-order on the uniform current. Using a

bR S b e el B e o

multipole expansion method, we derived a formal expression for the modal

equation in the form of a determinant, i.e. (33). Validity of the so-called
"thin-wire'" approximation was discussed for two cases; one corresponds
to the case of a vanishing height, |n|D << 1 and the other for height

greater than several wavelengths of waves in free-space. In both cases

the amplitude of the first order current becomes more significant as the

height decreases before the propagation constant is significantly modified. 3
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